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ABSTRACT

This paper extends the literature of the term structure estimation with splines. We fit the term struc-

ture of interest rates with a smoothing spline method that uses a different smoothing norm and locates

the knot points by the size of the fitting errors. The method is applied to the Finnish fixed income

market and compared to the usual smoothing spline methods and to the equally spaced knot loca-

tions. The results show that the new method where the spline is placed on the log of the discount

function and the knots are located freely outperforms the other methods.

Keywords: Term Structure of Interest Rates, Yield Curve, Smoothing Splines, Generalized Cross Vali-

dation.

I .  INTRODUCTION

The term structure of interest rates represents the yields to maturity of zero-coupon bonds as a

function of time to maturity. It can be presented by any of the following ways; using the dis-

count function, the zero-coupon interest rates, or the forward rates. The yield curve is the ba-

1 I am grateful to Vesa Puttonen, Peter Honoré, Stefan Jaschke, Miikka Tauren and two anonymous referees for
helpful comments and suggestions. I am also especially indebted to Darrell Duffie for numerous comments and
suggestions.
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sic tool in fixed income markets. It provides a framework for active bond portfolio manage-

ment (Ilmanen (1995)), where forward rates are used as break-even rates for expected bond

return analysis. The Value-at-Risk applications need good estimates of the yield curve to map

the cash flows from fixed income instruments in order to estimate the risks in the portfolios.

The fast growing market for fixed income derivatives instruments needs a term structure model

for pricing purposes. For example, the implementation of Hull and White (1996) interest rate

trees requires an estimate of a smooth term structure function in order to calibrate the tree to

fit the initial time bond prices. These are only a few examples where a smooth term structure

of interest rates plays a crucial role.

The estimation of the term structure of interest rates is usually done by parsimonious pa-

rameterization of the yield curve, e.g. Nelson and Siegel (1987), or by spline-based methods.

The spline-based methods, pioneered by McCulloch (1971, 1975) and extended by Vasicek

and Fong (1982), Coleman, Fisher and Ibbotson (1992), Adams and Van Deventer (1994), and

Fisher, Nychka and Zervos (1995), among others, have received a lot of attention lately, and

for example Fisher et al. (1995) claim that their spline method produces smaller pricing errors

than the Nelson and Siegel model. We also estimated the yield curves using the Nelson-Siegel

method and found that the pricing errors were several times larger than the pricing errors from

a simple spline estimation method. Partly, this can be due to the small number of instruments

available.

The spline-based methods can be divided into interpolating, least-squares and smoothing

methods. When the interpolating spline is used, the pricing errors are the smallest possible but

the term structure of the interest rates will not necessarily be the smoothest, because the inter-

polating spline function picks all the noise from the data (i.e. it overfits the data). Most of the

current literature has used the least-squares approach to the fitting of the term structure where

they use only a subset of data points, the maturities of the instruments, as knots. For example,

McCulloch (1975) has presented that the number of knot points can be selected as the square

root of the number of instruments and they should be located such that there is an equal number

of instruments between the knot points. However, the selection of the knot points is less trivial

and most of the time it is more or less a trial and error process. The empirical results show, see

e.g. Fisher et al. (1995), that when the number of knots is increased the pricing errors of the

different spline functions also change and another spline function may have smaller pricing

errors with different knot sets. The shape of the splined function affects not only the number of

knots but also the smoothness of the curve.

The smoothing splines try to combine the two different approximation objectives, to fit a

smooth curve to the data and to simultaneously keep the pricing errors as small as possible.

However, these two properties are often contradictory, and a compromise between the two
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properties needs to be found. Fisher et al. (1995) have proposed a method where the residual

errors are minimized with a penalizing roughness function. Even though their simulation re-

sults show that the smoothing spline method gives better estimation results, as should be ex-

pected, among the compared spline fitting methods their model uses a subset of the maturities

of the instruments as knot points.2

The objective of this paper is to extend the literature of the spline-based estimation meth-

ods by applying a smoothing spline method presented by Dierckx (1975, 1981, 1982) to the

fitting of the term structure of interest rates.3 The model deviates from other smoothing spline

methods by using a different smoothing norm, the square of the discontinuity jump in the third

derivatives at the interior knot points, and by locating the internal knot points by the size of

the fitting errors. The proposed method uses the generalized cross validation to detect the

smoothing parameter.

We apply the estimation method to the Finnish fixed income markets, where the number

of instruments is much less than the number of cash flow dates. On this kind of market the

estimation of the term structure of interest rates is very difficult without a spline-based method.

However, the proposed estimation method will work on all kinds of markets. The proposed

method is compared to other smoothing spline methods and also to the equally spaced knot

positions. Our results show that the new method where the spline is placed on the log of the

discount function and the knots are located by the size of errors outperforms the other fitting

methods.

The rest of the paper is organized as follows. Section 2 reviews the theory of curve fitting

with splines. Section 3 presents the term structure concepts and the estimation model, section

4 illustrates the empirical results on the Finnish market, and section 5 summarizes the paper.

II .  SPLINE FUNCTIONS

Before applying spline functions to the estimation of the term structure we first discuss briefly

the basic concepts, definitions and properties of the spline functions. We present the numeri-

cally stable B-spline basis, which is the most often used spline representation form, and dis-

cuss the different smoothing norms. These basic properties are important to understand when

using splines.

2 Although Fisher et al. (1995) maintain that their model lets the data determine the “effective number of para-
meters”, they fix the knot positions beforehand and use the GCV method to smooth the spline. As they use one
third of the total number of the data points as knots, we do not know whether another combination of knot
points will give a better smoothing spline or not. At least the value of the penalty function will be different with a
different combination of the knots as it is completely determined by the knot positions.
3 Dierckx (1995) gives a good description of smoothing spline functions and presents the algorithms and the
proofs.
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coefficients which depends on the smoothing parameter p, P is a column vector of bond prices,

and V (c (p)) is the vector of the present values of the bonds.

When we spline the discount function, the optimization problem reduces to the closed

form, but when we spline the log of the discount function the optimization problem has to be

solved numerically (see Appendix C). The smoothing parameter p can be detected by the GCV

method, equation (9), where n is the number of instruments. When we have a non-linear fit-

ting problem we have to estimate the coefficients for each p estimate, so the GCV estimation

slows down quite a lot from the linear case. Furthermore, the GCV method is derived for the

linear case (see Wahba (1990)).

There is still one important aspect in the estimation problem ( the number and loca-

tions of the knot points. This is due to the fact that knot points also affect the GCV value,

especially when the number of instruments, n, is small. McCulloch (1975) proposes that square

root of n is a good number of knots. He also recommends that the knots should be located

so that there is an equal number of instruments between the knot points. His argument is that

it allows the spline to fit equally complex shapes for all values of the abscissae (see McCul-

loch (1975)). Fisher et al. (1995), in contrast, uses the maturity of every third instrument as

a knot point. Other papers of the term structure estimation do not specify how they position

the knots.

Dierckx (1995) presents that we add knots only to the points where the fit is poor. We

start with a cubic polynomial, i.e. only end points are used as knots, and add knots to the

areas where the squared residuals are largest. The knot is added approximately in the middle

of the interval that has the largest squared residuals between the current knot points. The pre-

vious knots are not relocated, the new knots are only added to the set. The addition of knots

guarantees that the sum of the squared residuals decreases after each knot addition (see Dierckx

(1995)). The number of knots can be detected by the smoothing factor S, i.e. we add knots

until the sum of squared residuals is smaller than S. If we use the GCV method to find the

optimal smoothness, such as in this paper, we should search over all possible set of knots to

find the minimum of the GCV function.7

In this paper we limit the number of internal knots points to two. This limitation is due to

the small number of instruments. We compare this approach to the method presented by

McCulloch (1975), as we use the same number of knots but an equal number of instruments

falls between the knots. The method that has the smallest GCV value is ranked a better fitting

method.

7 None of the papers that we are aware of have done this.
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IV. EMPIRICAL RESULTS

The Data

In Finland, government benchmark bonds have existed only since the introduction of the

primary dealer system in August 1992. The benchmark bonds are government bonds, for

which primary dealers have to give two-way quotations. During the period June 3, 1993 through

February 6, 1996, there have been traded five benchmark bonds, the longest bond maturing

in 2004. All the benchmark bonds are bullet bonds with annual coupons. They are quoted

on an annual yield basis with a 30/360 year basis. The bid-ask spread has been no more than

five basis points of yield to maturity in all maturities. The size of the market has doubled

during the period and in February 1996 was about 103 billion Finnish markkas (FIM) (USD

23 billion).8

The data from the money market is from the bank CDs as they are the only instruments

that have been traded during the whole period with sufficient liquidity.9 The money market

instruments include 1, 2, 3, 6, 9, and 12-month CDs. The CDs are zero-coupon instruments

and they are quoted on a money market yield basis with an Actual/365 year basis. The size of

the market of the bank CDs has been quite steady during the period, about FIM 80 billion

(USD 18) and the liquidity has been good.

Our data are limited to these six money market instruments and the five benchmark bonds.

The Repo market is very illiquid and the data from it cannot be used in the term structure

estimation. When the maturity of a bond approaches one year, the bond trades at considera-

bly lower yields than the one-year bank CDs.10 This feature distorts the estimation, so that

bonds that have less than one year and three months time to maturity were omitted from the

sample. As the bonds and the CDs have a different day count basis, the CDs are converted to a

30/360 year basis after their yields are annualized.11 The data cover the period June 3, 1993

through February 6, 1996 and the total number of days is 679.

8 A good description of the Finnish Bond and Money Market is given by Valtonen et al.(1996).
9 The T-bill market is younger and the liquidity of the market is thin. During the last year T-bills have traded 1–
3 bp lower than bank CDs.
10 This phenomenon seems to be related to the discontinuation of the benchmark status of a bond. The Bank of
Finland announces the discontinuation date and the conversion period during which the bond can be converted
to other instruments. During the estimation period the benchmark status of two bonds was discontinued and
new benchmark bonds were introduced.
11 The continuously compounded annualized yield of the money market instrument can be calculated by using
equation (2), where the price of the instrument is

P (t,T) =        , where d is the number of days between t and T, d ≤ 365, and r is the quoted yield.

 The conversion is done by multiplying the CD yields by 360/365.

100 %

1 + rd/365
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The Results

We fit the term structure of interest rates by splining the discount function and the log of dis-

count function, equations (14i) and (14ii), respectively.12 First we discuss the number of knot

points. Second we compare the results to the results fitted by the ”standard” smoothing norm.

Third we compare the method of the freely located knot points to the method of equally spaced

knot points. The comparison is done in all cases by the GCV value –– the smallest GCV value

is ranked as the best method.

Figure 1 illustrates an example of what happens when we have three internal knot points

instead of two internal points and use the GCV function to find the optimal smoothness. The

knot points are located by the size of the fitting errors. The spline is placed on the log of the

12 We also tested the forward rate fitting, but the results were much worse. Our main findings were that the
forward rate curve required more knot points than other methods and pricing errors were at least 10 times larger.
One issue that can partly explain the results is the small number of instruments, but we also found that the
integrated B-spline basis was numerically less stable. The smoothing has nothing to do with the results, because
the results were similar without smoothing.

FIGURE 1. Fitting with 2 and 3 Internal Knots
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discount function and the values beyond 10.6 years are linearly extrapolated. The solid line

represents the yield curve with two internal knot points and the dashed line is the fitted yield

curve with three internal knot points. The dashed line is clearly overfitted. If the GCV value is

used to rank the models, we would have selected the model with three internal knot points.

This kind of problem occurs because the number of instruments is too small. For example,

Wahba (1990) states that the GCV method requires over 25 data points to be effective. In or-

der to get acceptable results with a small number of instruments we have to limit the number

of knot points. Intuitively the limitation forces the pricing errors to be big enough that we can

smooth the curve (see also figure 2). The maximum number of knots can be found by trial and

error. For this sample it has been found to be two internal knot points.

Table 1 panel A shows the ranking statistics of the fitting methods when the knots are

located freely by the size of the fitting error. The method that splines the log of the discount

function with the smoothing norm of the discontinuity jumps at the third derivatives is ranked

clearly the best model with 422 number one rankings of the 679 possibilities. Surprisingly, the

fitting with the discount function and using the ”standard” smoothing norm gets the second

highest number of number one rankings.

Panel B shows the results when the models are compared with the equally spaced knot

points. The previous winner is also ranked the best with 261 number one rankings. Interesting-

ly, the same model but where the equal number of instruments fall between the knot points is

ranked the second best model. The third best model is the discount function method with the

jump smoothing norm and freely located knot points.

Panel B also shows the average and median of the effective number of parameters. The

effective number of parameters is the trace of the influence matrix A (p). The mean and median

values are between 5 and 6 in all estimated methods. The values are a little bit smaller when

we have equally spaced knot points. However, the equally spaced methods get less number

one rankings in general. The reason is that the equally spaced methods have higher pricing

errors.

Panel C shows the average absolute pricing errors of the fitting methods. The smallest

errors are when knot points are located by the size of the pricing errors and the highest errors

are around the one-year maturity. When the knots are located so that there is an equal number

of instruments between the knot points, the average absolute pricing errors are much higher

but similar in all four methods. Furthermore, the highest pricing errors are now at the range of

2 to 6 years' maturity.

Figure 2 illustrates an example of what might happen when the knots are freely located or

equally spaced. The fitting method is the log of the discount function with a jump smoothing

norm. The solid line represents the method with freely located knots and the dashed line the
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Table 1. Descriptive statistics of the ranking of the fitting methods, the mean and median of the

number of effective parameters (EP), and the mean absolute pricing errors in basis points. Instruments

are 1– to 12-month bank CDs and five benchmark bonds during the period June 3, 1993 through

February 6, 1996 and the total number of days is 679. The acronyms of the models are the following:

DFJ is the discount function and LDFJ is the log of the discount function with a jump smoothing

norm, DFS and LDFS are smoothed with the "standard" smoothing norm. The knot points are located

freely by the size of the fitting errors in these models. The acronyms that have E as the last letter

are the models where an equal number of instruments falls between the knot points.

PANEL A: RANKING OF THE MODELS (FREELY LOCATED KNOT POINTS)

DFJ LDFJ DFS LDFS

RANK 1 50 422 121 86

PANEL B: RANKING OF THE MODELS (FREELY LOCATED AND EQUALLY SPACED KNOT

POINTS) AND THE EPS

DFJ LDFJ DFS LDFS DFJE LDFJE DFSE LDFSE

RANK 1 36 261 103 52 73 134 11 9

MEAN EP 5.859 5.511 5.956 5.699 5.539 5.190 5.682 5.192

MEDIAN EP 5.949 5.448 5.952 5.901 5.681 5.285 5.705 5.323

PANEL C: PRICING ERRORS IN BASIS POINTS

TIME TO DFJ LDFJ DFS LDFS DFJE LDFJE DFSE LDFSE

MATURITY

1 M 0.30 0.59 0.29 0.65 0.29 0.60 0.37 1.13

2 M 0.73 1.19 0.69 1.37 0.96 1.09 0.95 1.86

3 M 1.40 1.63 1.35 1.96 2.00 1.68 1.74 2.23

6 M 3.80 3.46 3.75 4.28 5.19 3.64 5.23 4.14

9 M 4.74 4.31 4.85 5.45 4.29 3.81 4.39 4.48

12 M 10.380 8.75 10.5900 9.44 7.02 8.98 6.39 8.70

1–2 Y 8.70 11.320 8.51 10.090 8.49 9.26 8.78 8.93

2–4 Y 6.86 7.32 6.83 6.42 12.640 10.690 12.530 10.640

4–6 Y 4.56 5.97 4.37 4.34 13.060 14.820 13.010 15.350

6–8 Y 1.21 2.18 1.29 2.58 5.53 9.86 4.82 11.140

8–11 Y 0.33 0.74 0.46 1.38 1.89 4.20 1.44 5.09
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FIGURE 2A. Fitting with Freely and Equally Spaced Knots

Figure 2B. Pricing Errors with Freely and Equally Spaced Knots
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method with equally spaced knots. The curves look very different and it is tempting to say that

the dashed line represents the better model. However, when we look at the lower panel which

shows the pricing errors, we see that they are much higher when knots are equally spaced.

Furthermore, the GCV value is also higher in the equally spaced method.

Finally figure 3 illustrates the fitted yield curves for the whole sample period. The method

is the log of the discount function with a jump smoothing norm and freely located knots. Dur-

ing the sample period the longest maturity has been a little less than 11 years in the beginning

of the period and at the end of the period it has been a little over 8 years. The values beyond

the longest maturity have been linearly interpolated.

V. CONCLUSIONS

This paper has presented a new method to estimate a smooth term structure of interest rates.

The method uses a different smoothing norm, the square of the discontinuity jumps in the third

derivatives at the internal knot points. The method is compared to the ”standard” smoothing

norm fitting methods. In addition, we also discuss the GCV method and the problems that

Figure 3. Yield Curves When Splining the Log of the Discount Function
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might occur with it. Moreover, we also located the knot points by the size of the fitting errors

and compare the results to the method proposed by McCulloch (1975).

The results show that the best model is the method that places the spline on the log of the

discount function, uses the jump smoothing norm and locates the knots by the size of the fit-

ting errors. As our sample is limited to a small number of instruments, it would be interesting

to study a larger market before any further conclusions are made.  j
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